Kinetic study of the intermetallic compound formation between eutectic Sn–3.5Ag alloys and electroplated Ni metallization in flip-chip solder joints
نویسندگان
چکیده
Ni-based under-bump metallization (UBM) has attracted wide attention due to its low reaction rate with Sn, compared with Cu and Cu alloy. In this study, the interfacial reactions between eutectic Sn–3.5Ag solder and Ni-based UBM, including electroplated Ni (EP-Ni) and electroless Ni (EL-Ni) are investigated. Morphology and growth kinetics of Ni3Sn4 intermetallic compounds are studied at different reflow temperatures and durations. The growth rate and the growth activation energy of Ni3Sn4 were measured for the two sets of samples. The activation energies are measured to be 25 kJ/mol and 38 kJ/mol for the Ni3Sn4 growth on EP-Ni and EL-Ni, respectively. The Ni3Sn4 on EP-Ni UBMs shows a slower growth rate and the Ni3Sn4/solder interface is void free even after 20-min reflow at 240 °C. On the other hand, the interface of Ni3Sn4/EL-Ni has a lot of microvoids after reflowing at 240 °C for 20 min.
منابع مشابه
Measurement of electromigration activation energy in eutectic SnPb and SnAg flip-chip solder joints with Cu and Ni under-bump metallization
Electromigration activation energy is measured by a built-in sensor that detects the real temperature during current stressing. Activation energy can be accurately determined by calibrating the temperature using the temperature coefficient of resistivity of an Al trace. The activation energies for eutectic SnAg and SnPb solder bumps are measured on Cu under-bump metallization (UBM) as 1.06 and ...
متن کاملMean-time-to-failure study of flip chip solder joints on CuÕNi„V...ÕAl thin-film under-bump-metallization
Electromigration of eutectic SnPb flip chip solder joints and their mean-time-to-failure ~MTTF! have been studied in the temperature range of 100 to 140 °C with current densities of 1.9 to 2.75 310 A/cm. In these joints, the under-bump-metallization ~UBM! on the chip side is a multilayer thin film of Al/Ni~V!/Cu, and the metallic bond-pad on the substrate side is a very thick, electroless Ni la...
متن کاملReaction of Sn-Bearing Solders with Nickel-based Under Bump Metallisations
This work relates to wafer bumping technologies for flip chip packaging applications in the electronics industry. Nickel and its alloys are alternative under bump metallization (UBM) materials because of their slower reaction rates with Sn-based solder as compared to Cu-based UBMs. In this study, we compared the morphologies of the intermetallic compounds (IMC) formed between Sn-bearing solders...
متن کاملEffects of Flux and Reflow Parameters on Lead-Free Flip Chip Assembly
The melting temperatures of most lead-free solder alloys are somewhat higher than that of eutectic Sn/Pb solder, and many of the alloys tend to wet typical contact pads less readily. This tends to narrow down the fluxing and mass reflow process windows for assembly onto typical organic substrates and may enhance requirements on placement accuracy. Flip chip assembly here poses some unique chall...
متن کاملThermal Fatigue Assessment of Lead-Free Solder Joints
In this paper the authors have investigated the thermal fatigue reliability of lead-free solder joints. They have focused their attention to the formation of the intermetallic compound and its effect on the initiation and propagation behaviors of fatigue cracks. Furthermore, they also studied the effect of voids in the solder joints on the fatigue reliability. An isothermal fatigue test method ...
متن کامل